Solutions to Instability Problems with Sequential Wrapper-based Approaches to Feature Selection
نویسندگان
چکیده
It is generally accepted that Wrapper approaches will outperform Filter-based approaches to feature selection, particularly in situations where an adequate amount of data is available. What is often overlooked is that Wrapper approaches can be unstable. For instance, different partitionings of the training data can result in different routes through the search space and thus in different feature subsets being selected. In this paper we illustrate examples of this problem and a solution based on the aggregation of several runs of a sequential search is suggested. This is essentially an ensemble solution to instability in feature subset selection and it does seem to stabilise the process.
منابع مشابه
Fast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کاملFuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection
Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...
متن کاملApplying Combined Approach of Sequential Floating Forward Selection and Support Vector Machine to Predict Financial Distress of Listed Companies in Tehran Stock Exchange Market
Objective: Nowadays, financial distress prediction is one of the most important research issues in the field of risk management that has always been interesting to banks, companies, corporations, managers and investors. The main objective of this study is to develop a high performance predictive model and to compare the results with other commonly used models in financial distress prediction M...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملDeveloping a Filter-Wrapper Feature Selection Method and its Application in Dimension Reduction of Gen Expression
Nowadays, increasing the volume of data and the number of attributes in the dataset has reduced the accuracy of the learning algorithm and the computational complexity. A dimensionality reduction method is a feature selection method, which is done through filtering and wrapping. The wrapper methods are more accurate than filter ones but perform faster and have a less computational burden. With ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002